News blog

What really happened in Malta this September when contagious bird flu was first announced

Cross posted from Scientific American’s Observations blog on behalf of Katherine Harmon.

A controversy over whether the U.S. government should allow details of a deadly new flu strain to be published in scientific journals has recently caught fire in the media. But I first heard the news of the mutated virus months ago in Malta at the European Scientific Working group on Influenza (ESWI) meeting.

The morning was sunny and warm on September 12 in St. Julian’s. Inside the Intercontinental hotel and conference center, young researchers, jaded veteran scientists and jet-lagged policy makers piled their plates with softly scrambled eggs, American-style sausages and an obligatory piece of fruit or two, shoveling in the offerings and mumbling hellos, in the bright, sky-lit hotel restaurant.

Just across the hall, however, in the cannily named Eden Arena (pictured), the room was dark, as researchers prepared to mount the stage and explain some of the many ways that humanity might soon be threatened by a truly terrifying flu pandemic.

So maybe it wasn’t quite that dramatic, but perhaps it should have felt more so. Less than an hour later, a suspiciously sniffly Ron Fouchier, a lanky virologist from the Erasmus Medical Center in Rotterdam with a wry smile and reassuringly understated manner, would announce that he and his lab had found a way to make the deadly H5N1 that would likely be just as transmissible from one human to the next as the seasonal flu.

Circulating seasonal strains, such as H3N2, are adept at attaching to the human nasal cavity and trachea, making them easily transferable among people via a sneeze, cough or sigh. But fortunately for us, H5N1, as it has circulated in bird populations, has not yet developed this capability. Fouchier and his team wanted to see if it was possible to give it that power.

So they “mutated the hell out of H5N1,” Fouchier said, towering over the podium at the meeting’s Monday morning plenary session. But as it turns out, they hardly needed to. With just a few genetic substitutions, the virus was able to affix to nose and trachea cells—a development “which seemed to be very bad news,” he said. Fortunately for the lab’s test ferrets, a common animal model for human flu transmission, the flu still didn’t seem to pass airborne from animal to animal.

And that was when “someone finally convinced me to do something really, really stupid,” Fouchier recounted. They put the mutated H5N1 into the nose of one ferret, then took a sample of nasal fluid from that ferret and put it in the nose of another. After 10 ferrets, the virus began spreading from ferret to ferret via the air just about as easily as a seasonal flu virus.

Read the rest of this post at Scientific American. Image courtesy of Katherine Harmon.


Comments are closed.