Synthetic Vaccines

Traditional and novel forms of vaccines.

In 2010 scientists from the JCVI announced the creation of the first bacterial cell controlled by a chemically synthesized genome1. The ‘synthetic’ cell was mycoplasma, a bacterium with an exceptionally small genome of less than 1 million base pairs and without a cell wall. Carole Lartigue, one of the co-authors of that landmark paper, later returned to the National Research Institute for Agriculture (INRA) in Bordeaux, France, to continue working on Mycoplasma. In fact Mycoplasma is not just a beautiful model organism for synthetic genomics. Their small genomes make them also a great model for systems biology, a work that was spearheaded by Luis Serrano at CRG in Barcelona2, 3, 4, who characterized Mycoplasma in a quantitative manner to apply this knowledge to do a rational engineering for novel applications.  Read more

The Gene Editing Bazaar

The Gene Editing Bazaar

On February 15, 2017, the US patent authorities ended a legal battle over IP rights between University of California at Berkeley and the Boston-based Broad Institute. According to the long awaited decision, Broad keeps its patents allowing them to own the use of CRISPR-Cas9 gene editing technologies in any eukaryotic organisms (including yeast, plants, animals and humans), while Berkeley’s broader patent application, which allows general use of CRISPR-Cas9 in any type of cell (including bacteria), will proceed before the USPTO. Gene editing – the precise and relatively easy deletion, insertion or modification of particular DNA sequences in the genome – is one of the latest innovations aiming to convert genetic engineering into a real engineering discipline. In the past, precise modifications were hard or almost impossible to achieve, frequently leaving genetic marks and requiring rather expensive and time-consuming processes.  Read more

Unlocking marine biotechnology

Unlocking marine biotechnology

Although marine organisms are known as a source of bioactive compounds with pharmaceutical properties such as antibiotic, antiviral, analgesic, immunomodulatory, antitumor, anti-inflammatory, and antiallergenic, their potential still remains largely unexplored. Synthetic biology, in combination with a better ecological understanding, has the potential to discover and design useful compounds not only for pharma but also for cosmetics, cosmeceuticals, nutriceuticals and pesticides.  Read more